Math 255A' Lecture 4 Notes

Daniel Raban

October 4, 2019

1 Finite Dimensional Normed Spaces, Quotients, Products, and Dual Spaces

1.1 Norms on finite dimensional space

Theorem 1.1. Let X be a normed space. If dim $X < \infty$, then any two norms on X are equivalent.

Proof. We can assume $X = \mathbb{F}^n$. If $\|\cdot\|$ is a mystery norm, we show that $\|\cdot\|$ is equivalent to the ℓ^1 norm $|x| = \sum_{i=1}^n |x_i|$.

Step 1: Let e_1, \ldots, e_n be the standard orthonormal basis of \mathbb{F}^n . Then let $M := \max_{1 \le i \le n} ||e_i||$. Then

$$||x|| = \left\|\sum_{i=1}^{n} x_i e_i\right\| \le \sum_i |x_i| ||e_i|| \le M|x|.$$

Step 1.5: This shows that $\mathrm{Id} : \mathbb{F}^n \to \mathbb{F}^n$ is continuous from $|\cdot|$ to $||\cdot||$. So $\{x : |x| = 1\}$ is compact according to $||\cdot||$.

Step 2: So we get $\varepsilon > 0$ such that any x with |x| = 1 has $||x|| \ge \varepsilon$. So $\{|| \cdot || / \varepsilon < 1\} \subseteq \{| \cdot || < 1\}$. That is, $| \cdot | \le (1/\varepsilon) || \cdot ||$.

Remark 1.1. A result called John's theorem gives explicit constants dependent on n^{1}

Corollary 1.1. Any finite dimensional subspace of a normed space is closed.

Corollary 1.2. Let X, Y be a normed spaces with dim $X < \infty$. Then if $T : X \to Y$ is linear, it must be continuous.

Proof. $||x||_X + ||Tx||_Y$ is a norm for X, so there is a constant $M < \infty$ such that $||x||_X + ||Tx||_Y \le M ||x||_X$.

¹Check out the proof of this one!

1.2 Quotients in normed spaces

Let X be a normed space over \mathbb{F} with a subspace M. Linear algebra tells you that the quotient $X/M = \{x + M : x \in X\}$ is a vector space.

Definition 1.1. The quotient space X/M has the **quotient seminorm** $||x + M|| := \inf\{||x - y|| : y \in M\} = \operatorname{dist}(x, M).$

Lemma 1.1. The quotient seminorm is a norm if and only if M is closed.

Definition 1.2. The quotient map is the map $Q: X \to X/M$ given by $x \mapsto x + M$.

Theorem 1.2. The quotient has the following properties:

- 1. $||Qx|| \le ||x||$ for all $x \in X$.
- 2. If X is a Banach space and M is closed, then X/M is a Banach space.
- 3. $U \subseteq X/M$ is open if and only if $Q^{-1}(U)$ is open in X.
- 4. Q is an open mapping.

Proof. 1. Since $0 \in M$, $||x + M|| \le ||x + 0|| = ||x||$.

- 2. Suppose $(x_n + M)_n$ is Cauchy in X/M. Then there is a subsequence $(x_{n_i} + M)_i$ such that $||x_{n_i} x_{n_{i+1}} + M|| < 2^{-i}$ for all *i*. Then there is a $y_i \in M + (x_{n_i} x_{n_{i+1}})$ such that $||y_i|| < 2^{-i}$. Now $x_{n_2} \in x_{n_1} + y_1 + M$, $x_{n_3} \in x_{n_1} + y_1 + y_2 + M$, and so on, giving us $x_{n_{i+1}} \in x_{n_1} + y_1 + \cdots + y_i + M$, where $x_{n_i} + y_1 + \cdots + y_i$ is a Cauchy sequence in X. Now suppose that $x_{n_i} + y_1 + \cdots + y_i \to z$. Then $||x_{n_{i+1}} z + M|| \to 0$. Then $x_n + M \to z + M$ in X/M
- 3. This is a rephrasing of (4).
- 4. Continuity follows from part(1). If $U \subseteq X$ is open, $x \in U$, and $B(x, \varepsilon) \subseteq U$, then any $y + M \in B_{X/M}(x + M, \varepsilon) = Q(B(x, \varepsilon)) \subseteq Q(U)$.

Definition 1.3. We use $M \leq X$ to say that M is a *closed* subspace of X.

Theorem 1.3. If X is a normed space, $M \le X$, and N is any finite dimensional subspace, then $M + N = \{x + y : x \in M, y \in N\}$ is closed.

Proof. Observe that $M + N = Q^{-1}(Q(N))$. Q(N) is finite dimensional, so it is closed. Q is continuous, so $Q^{-1}(Q(N))$ is closed.

Remark 1.2. This is surprisingly tricky to prove without using the quotient X/M.

1.3 Products of normed spaces

If we have a general family $(X_i)_{i \in I}$ of normed spaces, there is no canonical norm on the product. We may define notions of product by considering various subspaces of $\prod_{i \in I} X_i$.

Example 1.1. Fix $1 \leq p < \infty$. The ℓ^p -direct sum $\bigoplus_p X_i = \{(x_i)_{i \in I} \in \prod_i X_i : \sqrt{\sum_i \|x_i\|_i^p} < \infty\}$ is a normed space with the norm $\|(x_i)_i := \sqrt{\sum_i \|x_i\|_i^p}$.

Example 1.2. The ℓ^{∞} -direct sum $\bigoplus_{\infty} X_i = \{(x_i)_{i \in I} \in \prod_i X_i : \sup_i ||x_i||_i < \infty\}$ is a normed space with the norm $||(x_i)_i := \sup_i ||x_i||_i < \infty$.

Example 1.3. If $I = \mathbb{N}$, we also have $\bigoplus_0 X_i = \{(x_i)_{i \in I} \in \prod_i X_i : ||x_i||_i \to 0\}$.

- **Proposition 1.1.** 1. For each of these notions of product X, X is complete if and only if X_i is complete for all i.
 - 2. $X \to X/\{(x_i)_{i \in I} : x_i = 0\}$ is an isometry to X_i .
 - 3. Each coordinate projection $X \to X_i$ has norm 1 and is open.

1.4 Dual spaces

Definition 1.4. The **dual** of X is the space $X^* := \mathcal{B}(X, \mathbb{F})$ of bounded linear functionals. The **dual norm** is $||L||_* := \sup\{|L(x)| : ||x|| = 1\}$.

Proposition 1.2. If Y is complete, $\mathcal{B}(X, Y)$ is complete.

Corollary 1.3. X^* is a Banach space.

Here is a proof of this fact independent of the general fact about operators.

Proof. Let $L \in X^*$, and consider $L|_B$ restricted to the closed unit ball. Then $L|_B \in C_b(B)$. So the map ρ sending $L \mapsto L|_B$ gives us that $\rho(X^*)$ is a lienar subspace of $C_b(X)$. Moreover, $\rho(X^*)$ is closed. Since $C_b(B)$ is complete, so is

Example 1.4. Let $X = c_0 = \{(x_i)_{i \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} : x_i \to 0\}$. Then $L(x_1, x_2, \dots) = x_1$ is a linear functional.

Let e_i be the vector with all 0s but a 1 in the *i*-th coordinate. Then $\{e_1, e_2, \ldots, \} \cup \{(1, 1/2, 1/3, 1/4, \ldots)\}$ is linearly independent. So there exists a linear functional $L : c_0 \to \mathbb{R}$ such that $L(e_i) = 0$ for all *i* and $L(1, 1/2, 1/3, \ldots) = 1$. This *L* is not continuous.